Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts

نویسندگان

  • René Itten
  • Matthias Stucki
  • Jean-Michel Nunzi
چکیده

In this study, the environmental impacts of monolithic silicon heterojunction organometallic perovskite tandem cells (SHJ-PSC) and single junction organometallic perovskite solar cells (PSC) are compared with the impacts of crystalline silicon based solar cells using a prospective life cycle assessment with a time horizon of 2025. This approach provides a result range depending on key parameters like efficiency, wafer thickness, kerf loss, lifetime, and degradation, which are appropriate for the comparison of these different solar cell types with different maturity levels. The life cycle environmental impacts of SHJ-PSC and PSC solar cells are similar or lower compared to conventional crystalline silicon solar cells, given comparable lifetimes, with the exception of mineral and fossil resource depletion. A PSC single-junction cell with 20% efficiency has to exceed a lifetime of 24 years with less than 3% degradation per year in order to be competitive with the crystalline silicon single-junction cells. If the installed PV capacity has to be maximised with only limited surface area available, the SHJ-PSC tandem is preferable to the PSC single-junction because their environmental impacts are similar, but the surface area requirement of SHJ-PSC tandems is only 70% or lower compared to PSC single-junction cells. The SHJ-PSC and PSC cells have to be embedded in proper encapsulation to maximise the stability of the PSC layer as well as handled and disposed of correctly to minimise the potential toxicity impacts of the heavy metals used in the PSC layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D

Numerical modeling of polycrystalline thin-film solar cell serves as an imperative procedure to test the suitability of proposed physical clarification and to anticipate the effect of physical changes on cell performance. All in all, this must be conducted with only partial knowledge of input parameters. In this paper, we evaluated the numerical simulation of CdS/CIGS tandem multi junction sola...

متن کامل

The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency

 Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...

متن کامل

Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions

Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realis...

متن کامل

Design and Simulation of a Highly Efficient InGaN/Si Double-Junction Solar Cell

A solar cell is an electronic device which not only harvests photovoltaic effect but also transforms light energy into electricity. In photovoltaic phenomenon, a P-N junction is created to form an empty region.  The presented paper aims at proposing a new highly efficient InGaN/Si double-junction solar cell structure. This cell is designed to be used in a real environmental situation, so only s...

متن کامل

Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide.

The development of medium-bandgap solar cell absorber materials is of interest for the design of devices such as tandem solar cells and building-integrated photovoltaics. The recently developed perovskite solar cells can be suitable candidates for these applications. At present, wide bandgap alkylammonium lead bromide perovskite absorbers require a high-temperature sintered mesoporous TiO2 phot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017